Normality Testing - Skewness and Kurtosis

This article defines MAQL to calculate skewness and kurtosis that can be used to test the normality of a given data set.

Contents:

- SKEWNESS
- KURTOSIS
 - Scenario
 - METRIC 1: AVGWINRATE
 - METRIC 2: WINRATESMEANDIFF
 - METRIC 3: SKEWNESSN
 - METRIC 4: SKEWNESSD
 - METRIC 5: SKEWNESS
 - METRIC 6: KURTOSISN
 - METRIC 7: KURTOSISD
 - METRIC 8: KURTOSIS

In statistics, normality tests are used to determine whether a data set is modeled for normal distribution. Many statistical functions require that a distribution be normal or nearly normal. There are both graphical and statistical methods for evaluating normality:

- Graphical methods include the histogram and normality plot
- Statistically, two numerical measures of shape – skewness and excess kurtosis – can be used to test for normality. If either of these values is not close to zero, then your data set is not normally distributed.

Now let's look at the definitions of these numerical measures.

SKEWNESS

In statistics, skewness is a measure of the asymmetry of the probability distribution of a random variable about its mean. In other words, skewness tells you the amount and direction of skew (departure from horizontal symmetry). The skewness value can be positive or negative, or even undefined. If skewness is 0, the data are perfectly symmetrical, although it is quite unlikely for real-world data. As a general rule of thumb:

- If skewness is less than -1 or greater than 1, the distribution is highly skewed.
- If skewness is between -1 and -0.5 or between 0.5 and 1, the distribution is moderately skewed.
- If skewness is between -0.5 and 0.5, the distribution is approximately symmetric.
Here is the sample mean.

\[
\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^3 \\
\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^{3/2}
\]

Here, \(x\) is the sample mean.

KURTOSIS

Kurtosis tells you the height and sharpness of the central peak, relative to that of a standard bell curve.
Here, x is the sample mean. The "minus 3" at the end of this formula is often explained as a correction to make the kurtosis of the normal distribution equal to zero, as the kurtosis is 3 for a normal distribution.

Scenario

Suppose we are interested in performing some statistical analysis (for example, outlier detection) to evaluate the performance of sales representatives, and we want to test whether or not employee win rates are normally distributed. Our data set contains win rates (WinRates) as facts by employee ID (EmpId attribute), as depicted in the model below:

METRIC 1: AVGWINRATE

To find the average of our measurement, or WinRates, we can use MAQL to define the following metric:

```plaintext
SELECT AVG(WinRate) BY ALL OTHER
```

The BY ALL OTHER clause is used to avoid any slicing of the amount by any attributes that may be present in the report.

METRIC 2: WINRATESMEANDIFF

We can now use the metric created in Metric 1 to calculate the difference between any given win rate value and the overall average win rate:

```plaintext
SELECT SUM(WinRate - AvgWinRate) BY EmpId
```
METRIC 3: SKEWNESS

Next we can calculate skewness in two parts: numerator (SkewnessN) and denominator (SkewnessD). Note how we are using the POWER function, aggregating the result and dividing by the number of records.

```sql
SELECT (SELECT SUM((SELECT POWER(WinRatesMeanDiff, 3) BY EmpId)))/(SELECT COUNT(EmpId))
```

METRIC 4: SKEWNESSD

Similarly, we can calculate the denominator (SkewnessD).

```sql
SELECT POWER(((SELECT SUM((SELECT POWER(WinRatesMeanDiff, 2) BY EmpId)))/(SELECT COUNT(EmpId))), 1.5)
```

METRIC 5: SKEWNESS

Now we can simply divide the numerator (Metric 3) with the denominator (Metric 4) to get the skewness value.

```sql
SELECT SkewnessN / SkewnessD
```

METRIC 6: KURTOSISN

Here again, we calculate the numerator first. Note that the formula is very similar to Metric 3.

```sql
SELECT (SELECT SUM((SELECT POWER(WinRatesMeanDiff, 4) BY EmpId)))/(SELECT COUNT(EmpId))
```

METRIC 7: KURTOSISD

Next we can calculate the denominator.

```sql
SELECT POWER(((SELECT SUM((SELECT POWER(WinRatesMeanDiff, 2) BY EmpId)))/(SELECT COUNT(EmpId))), 2)
```

METRIC 8: KURTOSIS

Lastly, to calculate excess kurtosis, we can use the metrics calculated in Metrics 6 and 7.

```sql
SELECT (KurtosisN / KurtosisD)-3
```

Now you can test your data for normality before performing other statistical analysis.